Загрузка страницы

Для Казахстана

Курсовые

Дипломные

Отчеты по практике

Расширенный поиск
 

Предмет: Моделирование производственных и экономических процессов

Тип: Курсовая работа

Объем: 26 стр.

Полный просмотр работы

Модели регрессионного анализа

СОДЕРЖАНИЕ
ВВЕДЕНИЕ 3
1 ОБЩАЯ ЧАСТЬ 4
2.1 Многошаговый регрессионный анализ 4
2.2 Многомерный регрессионный анализ 6
2.3 Метод отсева факторов по t-критерию 10
2.4 Линейная регрессия 12
2.5 Нелинейные модели 15
2 ЗАДАЧА: ПОСТРОЕНИЕ ЛИНЕЙНОЙ РЕГРЕССИОННОЙ МОДЕЛИ С ПОМОЩЬЮ MICROSOFT EXCEL 17
ЗАКЛЮЧЕНИЕ 25
СПИСОК ЛИТЕРАТУРЫ 26

ВВЕДЕНИЕ
Для достоверного отображения объективно существующих в экономике процессов необходимо выявить существенные взаимосвязи между ними. В естественных науках часто речь идет о функциональной связи, когда каждому значению одной переменной соответствует вполне определенное значение другой. В экономике в большинстве случаев между переменными величинами существуют зависимости, когда каждому значению одной переменной соответствует не какое-то определенное, а множество возможных значений другой переменной. Такая зависимость получила название стохастической.
Частными случаями стохастической связи являются корреляционная и регрессионная связи.
Тема курсовой работы – модели регрессионного анализа.
Задача курсовой работы, рассмотреть:

1 ОБЩАЯ ЧАСТЬ
1.1 Многошаговый регрессионный анализ
Очевидно, что простое поверхностное изучение данных не позволяет обнаружить, какие факторы, рассмотренные на стадии статистического анализа исходной информации, являются существенными, а какие – нет. Может случиться, что якобы отсутствующая корреляция с данным фактором обнаруживается после того, как связь с другим фактором уже исключена.
Необходимо найти оптимальный вариант модели, отражающий основные закономерности исследуемого явления с достаточной степенью статистической надежности.

2.3 Метод отсева факторов по t-критерию
Наиболее оправданным является использование многошагового регрессионного анализа, основанного на оценке значимости коэффициентов регрессии с помощью t-критерия Стьюдента. Данный метод и был использован при анализе продолжительности жизни населения стран Африки в данной курсовой работе, потому что его применение четко формализовано, и в то же время на различных стадиях построения модели можно производить качественный экономический анализ. Рассмотрим его более подробно.

2.4 Линейная регрессия
Линейная регрессия — метод восстановления зависимости между двумя переменными.

2 ЗАДАЧА: ПОСТРОЕНИЕ ЛИНЕЙНОЙ РЕГРЕССИОННОЙ МОДЕЛИ С ПОМОЩЬЮ MICROSOFT EXCEL
Построение линейной регрессии иллюстрируется на следующем примере:

ЗАКЛЮЧЕНИЕ
Наиболее сложным этапом, завершающим регрессионный анализ, является интерпретация полученных результатов, т.е. перевод их с языка статистики и математики на язык экономики.
Интерпретация моделей регрессии осуществляется методами той отрасли знаний, к которой относятся исследуемые явления. Всякая интерпретация начинается со статистической оценки уравнения регрессии в целом и оценки значимости входящих в модель факторных признаков, т.е. с изучения, как они влияют на величину результативного признака.

СПИСОК ЛИТЕРАТУРЫ
1. Дьяконов В.П. Вейвлеты. От теории к практике. – М.: СОЛОН-Р, 2002. – 448 с.
2. Корн Г., Корн Е. Справочник по математике для научных работников и инженеров. – М.: Наука, 1984.
3. Френкель А.А., Адамова Е.В. Корреляционный и регрессионный анализ в экономических приложениях: Учебное пособие / МЕСИ – М:, 1987 г.
4. Мхитарян В.С., Трошин Л.И., Адамова Е.В., Шевченко К.К., Бамбаева Н.Я. Теория вероятностей и математическая статистика / Московский международный институт эконометрики, информатики, финансов и права. – М., 2002 г.
5. Кремер Н.Ш. Теория вероятностей и математическая статистика: Учебник для вузов. – М., ЮНИТИ-ДАНА, 2001 г.
6. “Многомерный статистический анализ на ЭBM с использованием пакета Microsoft Excel”/ М., 1997.